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BBN: Definition

• A BBN is a special type of diagram (called a 
directed graph) together with an associated 
set of probability tables. 

• The graph consists of nodes and arcs. 

• The nodes represent variables, which can be 
discrete or continuous.

• The arcs represent causal relationships 
between variables.
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BBN: Example

Train 
strike

Martin 
late

Norman 
late

Node Probability
Train strike

True False

Norman 
late

True 0.8 0.1

False 0.2 0.9

Node

NodeNode

Arc Arc
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BBN: Key Features

• BBNs enable us to model and reason about 
uncertainty.

• BBNs accommodate both subjective
probabilities and probabilities based on 
objective data.

• The most important use of BBNs is in revising
probabilities in the light of actual observations 
of events.
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What is Probability?

• Probability theory is the body of knowledge 
that enables us to reason formally about 
uncertain events.

• The probability P of an uncertain event A, 
written P(A), is defined by the frequency of 
that event based on previous observations.

• This is called frequency based probability.
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Probability Axioms

1. P(a) should be a number between 0 and 1.

2. If a represents a certain event then P(a)=1.

3. If a and b are mutually exclusive events then 
P(a or b)=P(a)+P(b). Mutually exclusive 
means that they cannot both be true at the 
same time.
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Probability Distributions

• There is a variable called A.

• The variable A can have many states:

• We can think of an event as just one state of the 
variable A.

• The probability distribution of A, written P(A), is 
simply the set of values
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Joint Events

• Suppose there are two events A and B that:
A = {a1, a2, a3} where a1=0, a2=1, a3=“>1”

B = {b1, b2, b3} where b1=0, b2=1, b3=“>1”

• The joint event A and B:

• P(A,B) is called the joint probability distribution of A
and B. The general form:
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Marginalisation

• If we know the joint probability distribution 
P(A,B) then we can calculate P(A) by a formula 
called marginalisation:

• This is because the events (a,b1) are mutually 
exclusive.

• When we calculate P(A) in this way from the joint 
probability distribution we say that the variable B
is marginalised out of P(A,B).
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Belief Measure

• In general, a person belief in a statement a
will depend on some body of knowledge K.
We write this as P(a|K).

• The expression P(a|K) thus represents a belief 
measure.

• Sometimes, for simplicity, when K remains 
constant we just write P(a), but you must be 
aware that this is a simplification.
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Conditional Probability

• The notion of degree of belief P(A|K) is an uncertain event A
is conditional on a body of knowledge K.

• In general, we write P(A|B) to represent a belief in A under 
the assumption that B is known. 

• Strictly speaking, P(A|B) is a shorthand for the expression 
P(A|B,K) where K represents all other relevant information.

• Only when all other information is irrelevant can we really 
write P(A|B).

• The traditional approach to defining conditional probability is 
via joint probabilities:
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Bayes’ Rule

• It is possible to define P(A|B) without 
reference to the joint probability P(A,B) by 
rearranging the conditional probability 
formula as follows:
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Bayes’ Rule (cont.)

• It is common to think of Bayes’ rule in terms of updating 
our belief about a hypothesis A in the light of new 
evidence B.

• Specifically, our posterior belief P(A|B) is calculated by 
multiplying our prior belief P(A) by the likelihood P(B|A) 
that B will occur if A is true.

• The power of Bayes’ rule is that in many situations where 
we want to compute P(A|B) it turns out that it is difficult 
to do so directly, yet we might have direct information 
about P(B|A).  Bayes’ rule enables us to compute p(A|B) 
in terms of P(B|A).
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Likelihood Ratio

• We have seen that Bayes’ rule computes 
P(A|B) in terms of P(B|A). The expression 
P(B|A) is called the likelihood of A. 

• If A has two values a1 and a2 then the 
following ration called likelihood ratio.
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Chain Rule

• We can rearrange the formula for conditional 
probability to get the so-called product rule:

• We can extend this for three variables:

• And to n variables:

• In general we refer to this as the chain rule.
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Independence and 
Conditional Independence

• The conditional probability of A given B is 
represented by P(A|B). The variables A and B 
are said to be independent if P(A)=P(A|B) or 
alternatively if P(A,B)=P(A)P(B).

• A and B are conditionally independent given C 
if P(A|C)=P(A|B,C).
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Chain Rule: Example

A

B

EC

D

P(A,B,C,D,E)=P(A|B,C,D,E)*P(B|C,D,E)*P(C|D,E)*P(D|E)*P(E)

P(A,B,C,D,E)=P(A|B)*P(B|C,D)*P(C|D)*P(D)*P(E)

Joint probability 
distribution
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Bayesian Belief Network

• A BBN is a special type of diagram (called a 
directed graph) together with an associated 
set of probability tables. 

• The graph consists of nodes and arcs. 

• The nodes represent variables, which can be 
discrete or continuous.

• The arcs represent causal relationships 
between variables.
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BBN: Example

Train 
strike

Martin 
late

Norman 
late

Node Conditional
Probability

Train strike

True False

Norman 
late

True 0.8 0.1

False 0.2 0.9

Root Node

Child NodeChild Node

Arc Arc

Node Conditional
Probability

Train strike

True False

Martin
late

True 0.6 0.5

False 0.4 0.5

Train strike 
(root node)

True 0.1

False 0.9
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Entering Evidence and Propagation (1)

• Having entered the probabilities we can now 
use Bayesian probability to do various types of 
analysis.

• For example, we want to calculate the 
(unconditional) probability that ‘Norman is 
late’.

P(Norman late)=P(Norman late|Train strike)*P(Train strike) + 
P(Norman late|No train strike)*P(No train strike) = 
(0.8*0.1)*(0.1*0.9)=0.17

This is called the marginal probability. 
i
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Entering Evidence and Propagation (2)

• The most important use of BBNs is in revising 
probabilities in the light of actual observations 
of events.

• Suppose, for example, that we know there is a 
train strike. In this case we can enter the 
evidence that ‘train strike=true’. 

• The conditional probability tables already tell 
us the revised probabilities for Norman being 
late (0.8) and Martin being late (0.6).
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Entering Evidence and Propagation (3)

• Suppose, however, that we do not know if 
there is a train strike but do know that 
Norman is late.

• Then we can enter the evidence that ‘Norman 
late=true’ and we can use this observation to 
determine:
a) The (revised) probability that there is a train 

strike, and

b) The (revised) probability that Martin will be late.
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Entering Evidence and Propagation (4)

a) P(Train strike|Norman late) = P(Norman late|Train
strike) * P(Train strike) / P(Norman late) = (0.8 * 0.1) 
* 0.17=0.47

b) P(Martin late) = P(Martin late|Train strike) * P(Train 
strike) + P(Martin late|No train strike) * P(No train 
strike) = (0.6 * 0.47) + (0.5 * 0.53) = 0.55

 When we enter evidence and use it to update the 
probabilities in this way we call it propagation.
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Hard and Soft evidence

• Hard evidence (instantiation) for a node X is 
evidence that the state of X is definitely a 
particular value.

• Soft evidence for a node X is any evidence 
that enables us to update the prior probability 
values for the states of X.
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BBN Connections

1. Serial Connection
– Any evidence entered at the beginning of the connection 

can be transmitted along the directed path providing that 
no intermediate node on the path is instantiated (which 
thereby blocks further transmission).

2. Diverging Connection
– Evidence can be transmitted between two child nodes of 

the same parent providing that the parent is not 
instantiated.

3. Converging Connection
– Evidence can only be transmitted between two parents 

when the child (converging) node has received some 
evidence (which can be soft or hard).
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BBN: Serial Connection

Train 
delayed

Signal 
failure

Norman 
late

evidence

Train 
delayed

Signal 
failure

Norman 
late

A B C

A B C

hard evidence
entered hear

The evidence from A cannot be transmitted to C because B blocks the channel.

In summary, in a serial connection evidence can be transmitted from A to C 
unless B is instantiated. Formally we say that A and C are d-separated given B.
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BBN: Diverging Connection

Train 
strike

Martin 
late

Norman 
late

A

B C

Evidence can be transmitted from B to through a diverging connection A, unless 
A is instantiated. We say that B and C are d-separated given A.
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BBN: Converging Connection

Martin 
late

Martin 
over

sleeps

Train 
delays

A

B C

Evidence can be transmitted from B to through a converging connection A, if 
anything is known about A. We say that B and C are conditionally dependent on 
A. In the other word, B and C are only d-separated when there is no evidence 
about A.
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d-separated and d-connected

• Two nodes X and Y in a BBN are d-separated if, 
for all paths between X and Y, there is an 
intermediate node A for which either:
– The connection is serial or diverging and the state 

of A is known for certain; or

– The connection is diverging and neither A nor any 
of its descendents have received any evidence at 
all.

• In general, two nodes which are not d-
separated are said to be d-connected.
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