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Mining Text and Web Data
2=

= [ext mining, natural language processing and
information extraction: An Introduction

= Text categorization methods
= Mining Web linkage structures

= Summary
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Mining Text Data: An Introduction

Structured Data

Data Mining / Knowledge Discovery

Multimedia Free Text

Hypertext

HomeLoan (

Loanee: Frank Rizzo
Lender: MWF
Agency: Lake View
Amount: $200,000
Term: 15 years

)

Frank Rizzo bought
his home from Lake
View Real Estate in
1992.

He paid $200,000
under al5-year loan
from MW Financial.

<a href>Frank Rizzo
</a> Bought

<a hef>this home</a>
from <a href>Lake
View Real Estate</a>
In <b>1992</b>.
<p>...
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Bag-of-Tokens Approaches

Documents Token Sets
Four score and seven nation — 5
years ago our fathers brought civil - 1
forth on this continent, a new war — 2
nation, conceived in Liberty, Feature men — 2
and dedicated to the Extraction died — 4
proposition that all men are people — 5
created equal. Liberty — 1
Now we are engaged in a God -1
great civil war, testing
whether that nation, or ... iy

Loses all order-specific information!
Severely limits context!
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Natural Language Processing

A dog Is chasing a boy on the playground | cyica

Det Noun Aux Verb Det Noun Prep Det Noun analysis
\/ v \/ \/ (part-of-speech
Noun Phrase tagging)
Noun Phrase  Complex Verb Noun Phrase /

~_

\Verb Phrase

_ _ Prep Phrase
Semantic analysis

Dog(d1).
Boy(bl).
Playground(pl).

Syntactic analysis
(Parsing)

Verb Phrase

Chasing(d1,b1,p1). _—
+ Sentence
Scared(x) if Chasing(_,x, ). _ _
A person saying this may
£ be reminding another person to
Scared(b1) /\ get the dog back...
Inference Pragmatic analysis

(speech act)

(Taksyelroon ChengXiang Zhai, CS 397cxDatdmih2@0Bjinciples and Algorithms



General NLP—Too Difficult!

= Word-level ambiguity
= design” can be a noun or a verb (Ambiguous POS)
= 'root” has multiple meanings (Ambiguous sense)
= Syntactic ambiguity
« “natural language processing” (Modification)
= A man saw a boy with a telescope.” (PP Attachment)
= Anaphora resolution
=« “John persuaded Bill to buy a TV for hAimself.”
(himself = John or Bill?)
= Presupposition
= “"He has quit smoking.” implies that he smoked before.

Humans rely on context to interpret (when possible).
This context may extend beyond a given document!

(Taksyelroon ChengXiang Zhai, CS 397cxDatdmih2@0Bjinciples and Algorithms




Shallow Linguistics

Progress on Useful Sub-Goals:
* English Lexicon
 Part-of-Speech Tagging
* Word Sense Disambiguation
* Phrase Detection / Parsing
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WordNet

An extensive lexical network for the English language

« Contains over 138,838 words.

« Several graphs, one for each part-of-speech.

« Synsets (synonym sets), each defining a semantic sense.
 Relationship information (antonym, hyponym, meronym ...)
* Downloadable for free (UNIX, Windows)

« Expanding to other languages (Global WordNet Association)
* Funded >$3 million, mainly government (translation interest)
* Founder George Miller, National Medal of Science, 1991.

(moisDe—(wet
synonym \
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Part-of-Speech Tagging

Training data (Annotated text)

Det N V1 P Det N P V2

This sentence serves as an example of annotated

text...

N

!

“This is a new sentence.” |:> POS Tagger :> T[?éi ALIE( Daet Ad N

new sentence.

Pick the most likely tag sequence.

p(t, [W)... p(t, [ W) p(Wy)... p(w, )

PO, Wy by by) = k Ind dent i t
p(w, [t)p(t |t,) ndependent assignmen
li:ll : Most common tag

S~

Partial dependency
(HMM)

(Agapteatirom ChengXiang Zhai, CS 397 Oata-MiraHg2 ®adgiples and Algorithms
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Word Sense Disambiguation

f)
“The difficulties of computational linguistics are rooted in ambiguity.”

N Aux V P N

Supervised Learning

Features:
* Neighboring POS tags (N Aux V P N)
* Neighboring words (linguistics are rooted in ambiguity)
« Stemmed form (root)
* Dictionary/Thesaurus entries of neighboring words
» High co-occurrence words (plant, tree, origin,...)
 Other senses of word within discourse

Algorithms:
* Rule-based Learning (e.g. |G guided)
« Statistical Learning (i.e. Naive Bayes)
» Unsupervised Learning (i.e. Nearest Neighbor)
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Prob

abilistic CFG

Grammar <

Lexicon <

[ S—>NP VP

NP — Det BNP
NP — BNP
NP— NP PP
BNP— N

VP >V

VP — Aux V NP
VP — VP PP

\ PP P NP

( V — chasing
Aux— is

N — dog

N — boy

N — playground
Det— the
Det— a

\ P —>o0n

1.0
0.3
0.4
0.3

1.0

0.01

0.003

Parsing
Choose most ||Rely parse tree... S Probability of this tree=0.000015
S

NP
/7 N\
D|et BNP
AN
do
: a boy
the playground
S Probability of this tree=0.000011

the playground
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Obstacles

* Ambiguity

“A man saw a boy with a telescope.”
« Computational Intensity

Imposes a context horizon.

Text Mining NLP Approach:
1. Locate promising fragments using fast IR
methods (bag-of-tokens).
2. Only apply slow NLP techniques to promising
fragments.
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Summary: Shallow NLP

However, shallow NLP techniques are feasible and useful:

» Lexicon —machine understandable linguistic knowledge
* possible senses, definitions, synonyms, antonyms, typeof, etc.

* POS Tagging — limit ambiguity (word/POS), entity extraction
 “...research interests include text mining as well as bioinformatics.’

NP N

* WSD — stem/synonym/hyponym matches (doc and query)

* Query: “Foreign cars” Document: “I'm selling a 1976 Jaguar...”

J

« Parsing — logical view of information (inference?, translation?)
» “A man saw a boy with a telescope.”
Even without complete NLP, any additional knowledge extracted from

text data can only be beneficial.
Ingenuity will determine the applications.
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Mining Text and Web Data

= [ext mining, natural language processing and
information extraction: An Introduction

= Text information system and information
retrieval —

= [ext categorization methods
= Mining Web linkage structures

= Summary
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Text Databases and IR

= Text databases (document databases)

= Large collections of documents from various sources:
news articles, research papers, books, digital libraries,

e-mail messages, and Web pages, library database, etc.

= Data stored is usually sem/-structured

» Traditional information retrieval techniques become
Llnadequate for the increasingly vast amounts of text
ata

= Information retrieval
= A field developed in parallel with database systems

« Information is organized into (a large number of)
documents

= Information retrieval problem: locating relevant
documents based on user input, such as keywords or
example documents

1/25/2010 Data Mining: Principles and Algorithms
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Information Retrieval

= Typical IR systems

= Online library catalogs

= Online document management systems
= Information retrieval vs. database systems

= Some DB problems are not present in IR, e.g., update,
transaction management, complex objects

= Some IR problems are not addressed well in DBMS,
e.g., unstructured documents, approximate search
using keywords and relevance

1/25/2010 Data Mining: Principles and Algorithms
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Basic Measures for Text Retrieval

Relevant Relevant & _
Retrieved Retrieved

All Documents

= Precision: the percentage of retrieved documents that are in fact relevant
to the query (i.e., “correct” responses)

|{Relevant} "{Retrieved}|
|{Retrieved}|

= Recall: the percentage of documents that are relevant to the query and
were, in fact, retrieved

precision =

|{Relevant} "{Retrieved}|
|{Relevant} |

precision =

1/25/2010 Data Mining: Principles and Algorithms 19



Information Retrieval Techniques

= Basic Concepts

= A document can be described by a set of
representative keywords called index terms.

=« Different index terms have varying relevance when
used to describe document contents.

= This effect is captured through the assignment of
numerical weights to each index term of a document.
(e.g.: frequency, tf-idf)
= DBMS Analogy
= Index Terms - Attributes

= Weights - Attribute Values

1/25/2010 Data Mining: Principles and Algorithms
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Information Retrieval Techniques

= Index Terms (Attribute) Selection:

= Stop list

= Word stem

= Index terms weighting methods
= Terms X Documents Frequency Matrices
= Information Retrieval Models:

= Boolean Model

= Vector Model

= Probabilistic Model

1/25/2010 Data Mining: Principles and Algorithms
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Boolean Model

= Consider that index terms are either present or
absent in a document

= As a result, the index term weights are assumed to
be all binaries

= A query is composed of index terms linked by three
connectives: not, and, and or

= €.qg.: car and repair, plane or airplane

= The Boolean model predicts that each document is
either relevant or non-relevant based on the match of
a document to the query

1/25/2010 Data Mining: Principles and Algorithms
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Keyword-Based Retrieval

= A document is represented by a string, which can be
identified by a set of keywords

= Queries may use expressions of keywords

« E.qg., car and repair shop, tea or coffee, DBMS but not
Oracle

= Queries and retrieval should consider synonyms, e.g.,
repair and maintenance

= Major difficulties of the model

= Synonymy: A keyword 7 does not appear anywhere in
the document, even though the document is closely
related to 7, e.g., data mining

= Polysemy: The same keyword may mean different
things in different contexts, e.g., mining

1/25/2010 Data Mining: Principles and Algorithms 23



Similarity-Based Retrieval in Text Data

= Finds similar documents based on a set of common
keywords

= Answer should be based on the degree of relevance based
on the nearness of the keywords, relative frequency of the
keywords, etc.

= Basic techniques
= Stop list

« Set of words that are deemed “irrelevant”, even
though they may appear frequently

= E.Q., a8, the, of, for, to, with, etc.
= Stop lists may vary when document set varies

1/25/2010 Data Mining: Principles and Algorithms
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Similarity-Based Retrieval in Text Data

= Word stem

= Several words are small syntactic variants of each
other since they share a common word stem

« E.Q., drug, drugs, drugged
=« A term frequency table

« Each entry frequent_table(i, j) = # of occurrences
of the word ¢ in document 4

= Usually, the ratio instead of the absolute number of
occurrences is used

= Similarity metrics: measure the closeness of a document

to a query (a set of keywords)
= Relative term occurrences Vy - Vs

. . SiIm(vy,V,) =
= Cosine distance: (1. V2) vy || V5 |
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Indexing Techniques

= Inverted index
= Maintains two hash- or B+-tree indexed tables:

« document_table: a set of document records <doc_id,
postings_list>

= term_table: a set of term records, <term, postings_list>

= Answer query: Find all docs associated with one or a set of terms
= + easy to implement

= — do not handle well synonymy and polysemy, and posting lists
could be too long (storage could be very large)

= Signature file
= Associate a signature with each document

= A signature is a representation of an ordered list of terms that
describe the document

= Order is obtained by frequency analysis, stemming and stop lists

1/25/2010 Data Mining: Principles and Algorithms
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Vector Space Model

= Documents and user queries are represented as m-dimensional
vectors, where m is the total number of index terms in the

ocument collection.

= The degree of similarity of the document d with regard to the query

q is calculated as the correlation between the vectors that
represent them, using measures such as the Euclidian distance or
the cosine of the angle between these two vectors.

Algebra

Linear

1/25/2010
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Latent Semantic Indexing

= Basic idea
= Similar documents have similar word frequencies
= Difficulty: the size of the term frequency matrix is very large

= Use a singular value decomposition (SVD) techniques to reduce
the size of frequency table

= Retain the K'most significant rows of the frequency table
= Method

= Create a term x document weighted frequency matrix A

= SVD construction: A=U*S*V

= Define K and obtain U,, S, and V,.

= Create query vector q'.

= Project g’ into the term-document space: Dg = q' * U, * S, !
= Calculate similarities: cosa =Dq . D/ [|Dgl|| * ||D]]
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Latent Semantic Indexing (2)

Weighted Frequency Matrix
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Probabilistic Model

= Basic assumption: Given a user query, there is a set of
documents which contains exactly the relevant
documents and no other (ideal answer set)

= Querying process as a process of specifying the
properties of an ideal answer set. Since these properties
are not known at query time, an initial guess is made

= This initial guess allows the generation of a preliminary
probabilistic description of the ideal answer set which is
used to retrieve the first set of documents

= An interaction with the user is then initiated with the
purpose of improving the probabilistic description of the
answer set

1/25/2010 Data Mining: Principles and Algorithms
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Types of Text Data Mining

= Keyword-based association analysis
= Automatic document classification
= Similarity detection
= Cluster documents by a common author

= Cluster documents containing information from a
common source

= Link analysis: unusual correlation between entities
= Sequence analysis: predicting a recurring event

= Anomaly detection: find information that violates usual
patterns

= Hypertext analysis
= Patterns in anchors/links
= Anchor text correlations with linked objects
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Keyword-Based Association Analysis

= Motivation

= Collect sets of keywords or terms that occur frequently together and
then find the association or correlation relationships among them

= Association Analysis Process

= Preprocess the text data by parsing, stemming, removing stop
words, etc.
= Evoke association mining algorithms
= Consider each document as a transaction

= View a set of keywords in the document as a set of items in the
transaction

= Term level association mining
= No need for human effort in tagging documents

= The number of meaningless results and the execution time is greatly

reduced
1/25/2010 Data Mining: Principles and Algorithms
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Text Classification

= Motivation

= Automatic classification for the large number of on-line text
documents (Web pages, e-mails, corporate intranets, etc.)

= Classification Process
= Data preprocessing
= Definition of training set and test sets

= Creation of the classification model using the selected
classification algorithm

= Classification model validation
= Classification of new/unknown text documents

s Text document classification differs from the classification of
relational data
= Document databases are not structured according to attribute-
value pairs

1/25/2010 Data Mining: Principles and Algorithms
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Text Classification(2)

= Classification Algorithms:
= Support Vector Machines
= K-Nearest Neighbors

¥ of documants

= Naive Bayes ———

= Neural Networks
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Document Clustering

= Motivation

= Automatically group related documents based on their
contents

= No predetermined training sets or taxonomies
= Generate a taxonomy at runtime
= Clustering Process

« Data preprocessing: remove stop words, stem, feature
extraction, lexical analysis, etc.

= Hierarchical clustering: compute similarities applying
clustering algorithms.

= Model-Based clustering (Neural Network Approach):
clusters are represented by “exemplars”. (e.g.: SOM)
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Text Categorization

= Pre-given categories and labeled document
examples (Categories may form hierarchy)

= Classify new documents

= A standard classification (supervised learning )
problem

Sports
‘ Categorization ‘ |
System Business
[ _
. Education
-\ Sports

[ P
-)\<Business Science
Education
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Applications

= News article classification

= Automatic email filtering

= Webpage classification

= Word sense disambiguation

1/25/2010 Data Mining: Principles and Algorithms
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Categorization Methods

= Manual: Typically rule-based
= Does not scale up (labor-intensive, rule inconsistency)

= May be appropriate for special data on a particular
domain

= Automatic: Typically exploiting machine learning techniques

= Vector space model based
= Prototype-based (Rocchio)
= K-nearest neighbor (KNN)
= Decision-tree (learn rules)
= Neural Networks (learn non-linear classifier)
= Support Vector Machines (SVM)

= Probabilistic or generative model based
= Naive Bayes classifier

1/25/2010 Data Mining: Principles and Algorithms
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Vector Space Model

= Represent a doc by a term vector
= Term: basic concept, e.g., word or phrase
= Each term defines one dimension
= N terms define a N-dimensional space
= Element of vector corresponds to term weight
= E.g., d=(Xq...,Xy), X is “importance” of term |

= New document is assigned to the most likely category
based on vector similarity.
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VS Model: Illustration

Starbucks

A

Category 3 - -----frememmmoeee

........... o2 Category 2

Java
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What VS Model Does Not Specify

= How to select terms to capture “basic concepts”
= Word stopping
= e.g. "a", "the”, "always”, “along”
= Word stemming

= €.9. "computer”, “computing”, “computerize” =>
“compute”

= Latent semantic indexing
= How to assign weights

= Not all words are equally important: Some are more
indicative than others

= €.g. "algebra” vs. “'science”
= How to measure the similarity

1/25/2010 Data Mining: Principles and Algorithms
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How to Assign Weights

= [Two-fold heuristics based on frequency

« TF (Term frequency)

= More frequent within a document - more relevant
to semantics

= €.9., 'query” vs. “commercial”

« IDF (Inverse document frequency)

« Less frequent among documents > more
discriminative

= €.g. "algebra” vs. “'science”

1/25/2010 Data Mining: Principles and Algorithms
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TF Weighting

= Weighting:
= More frequent => more relevant to topic
= €.9. "query” vs. “commercial”

=« Raw TF= f({,d): how many times term £ appears in
doc d

= Normalization:
= Document length varies => relative frequency preferred
= €.9., Maximum frequency normalization

0.5 f(t,d)
MaxFreq(d)

TE(t,d) = 0.5 +

1/25/2010 Data Mining: Principles and Algorithms
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IDF Weighting

= Ideas:

» Less frequent among documents - more
discriminative

= Formula:
TDF(t) =1 + Zog(%)
n — total number of docs
k — # docs with term t
appearing

(the DF document frequency)

1/25/2010 Data Mining: Principles and Algorithms
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TF-IDF Weighting

= [F-IDF weighting : weight(t, d) = TF(t, d) * IDF(t)
=« Fregent within doc = high tf & high weight
= Selective among docs = high idf = high weight
= Recall VS model
=« Each selected term represents one dimension
« Each doc is represented by a feature vector
» Its &#term coordinate of document & is the TF-IDF
weight
= This is more reasonable
= Just for illustration ...

= Many complex and more effective weighting variants
exist in practice

1/25/2010 Data Mining: Principles and Algorithms
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How to Measure Similarity?

= Given two document
D; = (w1, wig, - -+ ,w;N) D; = (wj1, wja, -+, wiN)
= Similarity definition
= dot product

N
SZ"II-’?.-(D@;_, Dj) — Z Wit * Wit

t=i

= Nhormalized dot product (or cosine)

N
Wy kU
Sim(D;, Dj) = Zt—a it * Wjt

1/25/2010 Data Mining: Principles and Algorithms

46



Illustrative Example

docl Sim(newdoc,docl)=4.8*%2.4+4.5*4.5

Sim(newdoc,do To whom is newdoc

more similar?

doc,doc3)=0

text mining travel map search engine govern president congress
IDF(faked) 2.4 4.5 2.8 33 21 5.4 2.2 3.2 4.3

docl 2(4.8) 1(4.5) 12.1) 1(5.4)
doc2 1(2.4) 2 (5.6) 1(3.3)
doc3 doc3 1(22) 1(32) 1(4.3)

newdoc 1(2.4) 1(4.5)
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VS Model-Based Classifiers

= What do we have so far?
= A feature space with similarity measure

= This is a classic supervised learning problem

= Search for an approximation to classification hyper
plane

= VS model based classifiers
= K-NN
= Decision tree based
= Neural networks
= Support vector machine

1/25/2010 Data Mining: Principles and Algorithms
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Probabilistic Model

= Main ideas

= Category C is modeled as a probability distribution of
pre-defined random events

= Random events model the process of generating
documents

= Therefore, how likely a document d belongs to
category C is measured through the probability for
category C to generate d.
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Quick Revisit of Bayes’ Rule

Category Hypothesis space: H={C,, ..., C.}

One document: D

P(D|C)P(C))
P(D)

P(Ci | D) —

As we want to pick the most likely category C*, we can drop p(D)

Posterior probability of C,

l 1
C*=argmax. P(C| D) =argmax. P(D|C)P(C)
f

Document model for category C
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Probabilistic Model

= Multi-Bernoulli
= Event: word presence or absence

= D=(xq, ..., xp), X =1 for presence of word w;; x; =0 for
absence

« Parameters: {p(w;=1|C), p(w;=0]|C)}, p(w;=1|C)+
p(w;=0]|C)=1
= Multinomial (Language Model)
= Event: word selection/sampling
= D=(ny, ..., ny), n;: frequency of word w; n=n;,+...+ny,,

M
p(D:(nl""7n|v|)|C): p(nlc)[n " jH IC)(V\/I |C)ni
h - Ny )i

n

=« Parameters: {p(w;|C)} p(w{|C)+... p(w},,IC) = 1
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Parameter Estimation

Training examples: = Category prior
o) EC)

YIEC)

= Multi-Bernoulli Doc model

(w,=1/C) deEZat-)§(Wj'd)+Ol5 1if W, occursin d
P Wj = il = : =

o(w;,d) = _
|E(C)|+1 0 otherwise

E(C,) = Multinomial doc model
Vocabulary: V = {wy, ..., wy,} D, cfw;d)+1
p(w, | C) =5 c(w,,d) =counts of w; in d
c(w,, d)+|V|
m=1deE(C,)
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Classification of New Document

Multi-Bernoulli

Multinomial

= (%) Xe{0.3}
C*=argmax. P(D|C)P(C)

Vi
= argmax, [ | p(w, =X, |C)P(C)
i=1

) [dl=n=n+..+n
C*=argmax. P(D|C)P(C)

VI

v
= argmax, p(n|C)[ | p(w; |C)"P
i=1

1/25/2010

= argmax, log p(n|C)+log p(C +Zn log p(w: | C)
= argmax, log p(C +Zlogp =X |C)
~argmax_. log p(C +Zn log p(w, | C)
Data Mining: Principles and Algorithms
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Categorization Methods

= Vector space model
= K-NN
= Decision tree
= Neural network
= Support vector machine
= Probabilistic model
= Naive Bayes classifier
= Many, many others and variants exist [F.S. 02]
= e.g. Bim, Nb, Ind, Swap-1, LLSF, Widrow-Hoff,
Rocchio, Gis-W, ... ...
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Evaluations

s Effectiveness measure
= Classic: Precision & Recall

Table ll. The Contingency Table for Category c;

Category Expert judgments
Ci YES NO
Classifier YES TP; FP;
Judgments NO I'N; T'N;
TP
« Precision 7 = TP. + FP.
Recall b=
= RE€Cd Pi = TP, + FN,
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Evaluation (con’t)

= Benchmarks
= Classic: Reuters collection

= A set of newswire stories classified under categories related to
economics.

= Effectiveness
= Difficulties of strict comparison
= different parameter setting
= different “split” (or selection) between training and testing
= Various optimizations ... ...

=« However widely recognizable
= Best: Boosting-based committee classifier & SVM
= Worst: Naive Bayes classifier

= Need to consider other factors, especially efficiency
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Summary: Text Categorization

= Wide application domain
= Comparable effectiveness to professionals

= Manual TC is not 100% and unlikely to improve
substantially.

= AT.C. is growing at a steady pace
= Prospects and extensions
= Very noisy text, such as text from O.C.R.

= Speech transcripts

1/25/2010 Data Mining: Principles and Algorithms
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Research Problems in Text Mining

1/25/2010

Google: what is the next step?

How to find the pages that match approximately the
sohpisticated documents, with incorporation of user-
profiles or preferences?

Look back of Google: inverted indicies

Construction of indicies for the sohpisticated documents,
with incorporation of user-profiles or preferences

Similarity search of such pages using such indicies

Data Mining: Principles and Algorithms
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Mining Text and Web Data

= [ext mining, natural language processing and
information extraction: An Introduction

= Text categorization methods
= Mining Web linkage structures <=
= Based on the slides by Deng Cai

= Summary
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Outline

Background on Web Search

VIPS (VIsion-based Page Segmentation)
Block-based Web Search

Block-based Link Analysis

Web Image Search & Clustering
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Search Engine — Two Rank Functions

K

E Search > 1 structure analysis

: Importance Ranking
@ank Functions H (Link Analysis) K
Similarity s il
based on ¢ \Relevance Ranking> @
content or text AL

- Backward Link
=
Indexer

Web Topology
Graph

(Anchor Text)
Inverted

Index
Anchor Text Web Graph
Generator Consguctor

—
URL
Dictioanry

L

v
Forward
Index

v

N
Term Dictionary
(Lexicon)

Forward

M D .
eta Data Link

Web Pages
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Relevance Ranking

* Inverted index

- A data structure for supporting text queries
- like index in a book

aalborg 3452, 11437, .....
AN
N— ] ) )
indexing .
— arm 4. 19, 29, 98 143
- - ’ ) ' ) y e
disks with [—— armada 145. 457 789. ..
documents | ) armadillo 678, 2134, 3970, ...
N armani 90, 256, 372, 511, ...
N— ]
N—”’
77 602, 1189, 3209, ..

inverted index



The PageRank Algorithm 7R
O Ac—)

= Basic idea @L' @/ J

= significance of a page is \C‘)_____,,
determined by the significance of
the pages linking to it s(a) ~ s(b) + s(¢) + s(d) ?
v el 1 1f pageilinksto page |
ore precisely. — .
- P Y ' 10 otherwise

= Link graph: adjacency matrix A,
= Constructs a probability transition matrix M by renormalizing each

row of Ato sum to 1 J+(l-e)M U, =1/nforalli, ]
= Treat the web graph as a markov chain (random surfer)

= The vector of PageRank scores p is then defined to be the
stationary distribution of this Markov chain. Equivalently, p is the
principal right eigenvector of the transition matrix (eU +(1— )M )T

(U+@0-&)M) p=p
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Layout Structure

1/25/2010

Compared to plain text, a web page is a 2D presentation

= Rich visual effects created by different term types, formats,
separators, blank areas, colors, pictures, etc

= Different parts of a page are not equally important
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Motivation for VIPS (VIsion-based
Page Segmentation)

= Problems of treating a web page as an atomic unit

= Web page usually contains not only pure content
= Noise: navigation, decoration, interaction, ...

= Multiple topics
» Different parts of a page are not equally important
= Web page has internal structure

= Two-dimension logical structure & Visual layout
presentation

= > Free text document
= < Structured document
= Layout — the 3" dimension of Web page
= 1t dimension: content
= 2" dimension: hyperlink

1/25/2010 Data Mining: Principles and Algorithms
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Is DOM a Good Representation of Page
Structure?

-\ Page Analysis - IEEE Standards Association Home Page. him
[Mpc//oondndsiweacg S———————— s

X Page Analysis - Yahooligans! E-Cards

,hﬂ'p /lecards yshoolgers com/content/ecandi/category 7wl 33tge16 - Ps |"5~ ML AR DOM
_ 2w | el
DOM_Sibling | VIS MewOOM [pom_¢ ||
TR )

= Page segmentat

R
. EXt ra Ct St r u Ct :;:::’:f;" ?1: :,)Eu;'cg:r:«’b > Send an E-Card ; ® 10
Animals / . T
U L, TIT L E , H 0 Choose a Card 2 Address the Card  (3) Choose a Message 4) PreviewsSend Card 1 b

= DOM is mor
does not ne
structure

= How about XML
= A long way (¢

ngHoOLIGANSE; ‘}( ards.

TR

Aftribute | Value -
tagName TR

sourcaindex 195

outerHTML <TR style="

innerText
innerTextLen 8
Left 10
Top 692
offsetleft 0
offsetTop 440

offsetWidth 620
offsetHeight 84
cumentStyle. . transparent
currentStyte f. 12pt
currentStyte f.. normal
currentStyle £ 400 -

AwrartShis 2 N o
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VIPS Algorithm

= Motivation:

= In many cases, topics can be distinguished with visual clues. Such
as position, distance, font, color, etc.
= Goal:
= Extract the semantic structure of a web page based on its visual
presentation.

s Procedure:

= Top-down partition the web page based on the separators
= Result

= A tree structure, each node in the tree corresponds to a block in
the page.

= Each node will be assigned a value (Degree of Coherence) to

indicate how coherent of the content in the block based on visual
perception.

= Each block will be assigned an importance value
= Hierarchy or flat

1/25/2010 Data Mining: Principles and Algorithms
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VIPS: An Examplg/

Web Page

v v v

VB1 VB2 E

v v
e ]
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O EEEEEE NSNS EE NSNS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEN
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© -
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<

o™
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\
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1suan,e new place, she tels us, in the fresh and

Formats: Hardcover, Ebook
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v v v v v v
E 'vB22.1||vB222| vB223| VB2 24| ... |

A hierarchical structure of layout block

A Degree of Coherence (DOC) is defined
for each block

= Show the intra coherence of the block

= DoC of child block must be no less
than its parent’s

The Permitted Degree of Coherence
(PDOC) can be pre-defined to achieve
different granularities for the content
structure

= The segmentation will stop only when
all the blocks’” DoC'is no less than
PDoC

= The smaller the PDoC, the coarser
the content structure would be
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Example of Web Page Segmentation (1)

age Analysis - IEEE Standards Association Home Page. him
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( DOM Structure ) ( VIPS Structure )
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Example of Web Page Segmentation (2)
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offsetLeft 0 textlength2 13
offsetTop 440 FrameSource.. 0
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( DOM Structure ) ( VIPS Structure )

= Can be applied on web image retrieval
= Surrounding text extraction
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Web Page Block—Better Information Unit

Page Segmentation

* Vision based approach

Block Importance Modeling

« Statistical learning

NN.com International icrosoft Internet Explorer

File Edit WView Favorites Tools  Help

=100 %
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Science & Space
Entertainment
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Travel

Weather

Special Reports

What's on
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Make this my homepage | View U.5. Edition
EXPLOSIONS ROCK BAGHDAD

Mortars strike the heavily fortified site ofthe
coalition HQ in Irag. Full Story | # Yideo |
Coalition casualties | Bush hails sacrifice

MORE TOP STORIES
- Al Gaeda strateqy shift: Experts | London target’
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moRE REFORTS (1

Web Page Blocks

= Saudi bomb suspects questioned | # Video

ad of Bush's UK visit | Poll criticizes president

- Japan leads Asian recovery | Small losses on

Services -
Languages -

N

Be the first to know!

confidential report obtained by CHM.
FULL STORY

= Snap inspections allowed
allery: [ran's huclear facilities
= Interactive: How uranium is enriched

Eloal Office IAEA: Iran had secret nuke
usic Room
Talk Asia agenda

The International Atomic Energy Agency has
concluded that Iran has secretly produced small
amaounts of nuclear materials, including low-
entiched uraniurm and plutonium that could he
used to develop nuclear weapons, according to 3

- Vietnam uncovers 7th century miins
- Rock star Van has to pay the man

World News | Asia News | Europe Hews

WORLD BUSINESS
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choese 1 ol
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woRLo news 1

ROYAL SPOOF

Dutch Pt ‘not amused'

The House of Orange is at
the center of a satirical storm

HIGH ANXIETY

i |

Cultures clash in space
U5 and Russia search far
middle ground on safety

SCIENCE & SPACE NEws 1]

EYE ON CHINA

Getting tough over Taiwan
China settoissue a tough
warning to Talwan
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Block-based Web Search

= Index block instead of whole page
= Block retrieval
= Combing DocRank and BlockRank
= Block query expansion
= Select expansion term from relevant blocks

1/25/2010 Data Mining: Principles and Algorithms
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Experiments

s Dataset

= TREC 2001 Web Track

= WT10g corpus (1.69 million pages), crawled at 1997.
= 50 queries (topics 501-550)

= TREC 2002 Web Track

= .GOV corpus (1.25 million pages), crawled at 2002.
= 49 queries (topics 551-560)

= Retrieval System
= Okapi, with weighting function BM2500
= Preprocessing
= Stop-word list (about 220)
= Do not use stemming
= Do not consider phrase information
= Tunethe 5, k; and k;to achieve the best baseline
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Block Retrieval on TREC 2001 and TREC 2002

—+— VIPS (Block Retrieval)
=== Baseline (Doc Retrieval)

18+
17.5
5 Y Sil
8 7]
O (6]
216.5 o
o o
() (O]
£ 16 g
g —+— VIPS (Block Retrieval) g 14k
< --- Baseline (Doc Retrieval) <
155~
13.5~
15 E r r r r L 13 E r
0 0.2 0.4 0.6 0.8 1 0 0.2
Combining Parameter o
TREC 2001 Result
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Query Expansion on TREC 2001 and TREC 2002
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Block-level Link Analysis
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1/25/2010

A Sample of User Browsing Behavior

High Court to Mull 'Enemy Associated
Combatant' Rule Ap 22

hour, 12 minutes ago

By GINA HOLLAND, Associated Press Whriter

ASHINGTON - The Supreme Court agreed Friday to decide whether
.3. citizens arrested in America as "enemy combatants” may be held

ndefinitely without access to lawyers or courts, setting the stage for a
ajor ruling on presidential powers versus civil liberties.

The justices had already agreed to consider
the government's detentions of terror
suspects — American and foreign — caught
overseas and held incommunicado.

=) But the case of former Chicago gang member
AP Phato Jose Padilla is seen as the one that will set a
key standard as the government pursues the
open-ended war on terror: Does the threat of
attack justify giving federal authorities unprecedented legal latitude to
old their own citizens?

‘The Padilla case is the most significant case for the government," said
Scott Silliman, a Duke University law professor. "The court will have the
ppportunity to define what it is we call the “war on terrorism."
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Improving PageRank using Layout Structure

= Z. block-to-page matrix (link structure)

, 1/s, if thereis a link fromthe b™ block to the p™ page
* 0 otherwise

= X' page-to-block matrix (layout structure)
X - f(b) if the b™ block is in the p™ page
0 otherwise
f i1s the block importance function

= Block-level PageRank: Wp = XZ
= Compute PageRank on the page-to-page graph

= BlockRank: Wg =ZX
= Compute PageRank on the block-to-block graph
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Using Block-level PageRank to Improve Search

A i
0.165}
0.16 |-
01551 T— Block-level
PageRank
_ 015
k=)
D 0.145}
3 PageRank
O 014}
(¢D)
S
B 0.135
z
0.13}-
0.125[- -8~ BLPR-Combination
0.12 —$— PR-Combination
0115 L L L L L L L L L L =
08 082 084 08 08 09 092 094 0.9 0.98 1 o

Search = o * IR_Score + (1- a) * PageRank

Block-level PageRank achieves 15-25%
improvement over PageRank (SIGIR'04)
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Mining Web Images Using Layout &
Link Structure (ACMMM’04)
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Image Graph Model & Spectral Analysis

= Block-to-block graph: Wp =ZX
= Block-to-image matrix (container relation): Y
(]/Si | IJ S bi

Yij = .
0 otherwise

= Image-to-image graph:
g ge grap W, =YTWBY

= ImageRank
= Compute PageRank on the image graph
= Image clustering
= Graphical partitioning on the image graph
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ImageRank

= Relevance Ranking = Importance Ranking = Combined Ranking

U rwv— .
- e T f,
o v o e
- | S T
q-l-
- v budtell L
Tim bn ru howw
< Aria
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ImageRank vs. PageRank

= Dataset

= 26.5 millions web pages

= 11.6 millions images
= Query set

= 45 hot queries in Google image search statistics
= Ground truth

= Five volunteers were chosen to evaluate the top 100
results re-turned by the system (iFind)

= Ranking method

s(X) = a - rank (X)+(1—«)-rank

|mp0rtance relevance ( )
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ImageRank vs PageRank

Image search accuracy (ImageRank vs. PageRank)
0.68

—e— ImageRank

0.66 —=— PageRank ||

o 0.64 A
i

®
Q& 062

0.6

0.58

0O 01 02 03 04 05 06 07 08 09 1

alpha

= Image search accuracy using ImageRank
and PageRank. Both of them achieved their
best results at =0.25.
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Example on Image Clustering &
Embedding

1710 JPG images in 1287 pages are crawled within the website
http://www.yahooligans.com/content/animals/

Six Categories

1/25/2010 Data Mining: Principles and Algorithms

87


http://www.yahooligans.com/content/animals/photo/4030.html
http://www.yahooligans.com/content/animals/photo/3898.html
http://www.yahooligans.com/content/animals/photo/4178.html
http://www.yahooligans.com/content/animals/photo/3895.html
http://www.yahooligans.com/content/animals/photo/3298.html
http://www.yahooligans.com/content/animals/photo/3299.html
http://www.yahooligans.com/content/animals/photo/3388.html
http://www.yahooligans.com/content/animals/photo/3520.html
http://www.yahooligans.com/content/animals/
http://www.yahooligans.com/content/animals/photo/3870.html
http://www.yahooligans.com/content/animals/photo/3672.html
http://www.yahooligans.com/content/animals/photo/2782.html
http://www.yahooligans.com/content/animals/photo/3630.html
http://www.yahooligans.com/content/animals/photo/2389.html
http://www.yahooligans.com/content/animals/photo/2232.html
http://www.yahooligans.com/content/animals/photo/2191.html
http://www.yahooligans.com/content/animals/photo/2149.html
http://www.yahooligans.com/content/animals/photo/4529.html
http://www.yahooligans.com/content/animals/photo/7559.html
http://www.yahooligans.com/content/animals/photo/4517.html
http://www.yahooligans.com/content/animals/photo/4306.html
http://www.yahooligans.com/content/animals/species/4388.html
http://www.yahooligans.com/content/animals/photo/4484.html
http://www.yahooligans.com/content/animals/photo/4461.html
http://www.yahooligans.com/content/animals/photo/7607.html

Fishes Insects

Home > Animals > Eishes > Great Banacuda

9| Fishes

Great Barracuda
S

phyraena barmacuda

Sraller Great Bamacudas can be found
in shallow inshare waters over sandy
biottoms, fquarsly in schaols. Larger
indriduals are moee often faund ofshare
ocen, 30 378 usualy soitary. Grest
Barracudas feed chielly on fishes and
accazsonally an squids and shrimps
smean Phaizaisahn They are curious ssh, and aften follare
snorkelers or divers. Attacks on humans
ara rare and probably aceur when barracudas iry Lo Lake speared fish from
dhers

et Bamacuda
°

Look For: A slendsr fsh with 2 dorsal fins and a large mouth. Gray abave;
sitery sides. Dark spots above anal fn
Lenghes' Related Species:

- Y
Habitat: Waem coastal waters, ogen Tstiophorus

Home > Animals > Bitds > Red tailed Hawk

] Gaes % Birds

Red-tailed Hawk
Buteo jamaicensis

The Red-tail divides its time batween

H y perching in trees and soaring, always
Yahooligans! - Help N g oing o pry. such 8 smal rodonts o
cl i reptiles. Like other buteos (soanng
8 hawks), it drits in wide circles in the sky

Look For: Brown abave, white below,
often with dark streaks on belly. May be
all brown in West. The tail s brown in juvendes. orangish in adults

Related Species:

Bastaied Havk
© uim Bestzsl

Length: 1825

Red-
Habitat: Open country, forests. shouldered

Hawk
Range: Alaska and Canada (mainly only Buteo

fneatus

in summer) and south throughout U'S.

Northern
ocean. Juveniles often near shore. . Lean more about birds:
Fishes Select a topic 3 Hanier
Range: Pacifc nd Ataic conte S
Caution: Known 1o attack swimmers.

Lo more oo s Lz g Arctic Fox

Select a fopic

»
=

v
Animals

Arctic Fox
Alope 5

The Arctic Fox is well suited to its

subzero habitat: it has a compact body
© . with short legs and ears (body heat is

lost through long ears and legs), dense ADVERTISEMENT
fur, and thick hair on the footpads, which

insulates against the cold and provides

traction an ice. YWinter fur develops in

October: The coat thickens, and the new I"m“
hairs are much Jpter, providing camouflage against snow and ice. Sadly, S
€ Science this fox has bge'heavily hunted for its beautiful fur coat.

Movies
Aurctic Fox

@ Rita Summers
PARENTS
@ Referenc Look Fop/A fOx of the extreme naorth, pure white in winter, brownish-gray

& | Ask Earl

% CoolPagl

\w ahge: Alaska and northern Canada,

Learn more abhout mammals:
] Games
| Select a topic V| _ %] Auimats

YAmlIGANS!%még Yahoiganel-Helt @ Nature.com

Mammals

Fishes Insects

Home > ls > Mammals > Common Gray Fox

%8 Mammals

Common Gray Fox
Urocyon cinereoargentaus

+ Anirmals

# Although it is a member of the dog
fartily, the Comman Gray Fox is & gaod

. 1 . i . tree climber and often hides in trees. This
‘4 ECands i i < fox feeds on cottontail rabbits, mice, RS CEI R
s woles, and other small mammals, birds,
i insects, and plant material, including

e L T PR |

LR =1 L O TR IRT N N A= TRLE T ¥y= -] ) A EE!:;::;]\::,Pzzrsgv'narsn:n;dnuts,
L1 Jokes w0 . grass,
T blackberries. Grasshoppers and crickets

Science are often a very important part of the diet in late summer and auturmn

« Environment and MNature

@ Reference Look For: A gray fax with a black-and-white face and red around the ears,
: neck, chest, and lower sides. Tail black on top and t tp
Mg Vitlpes mactolis | o P
fean Length: Body 24" long track and sign info
Aill Stories & CoolPage Habitat: Woodlands and brushy areas. e 2@ Spedies:
r Arctic Fox
- Astology Range: Most of the U.S., but nat in Alopex

Rockies or parts of Great Plains. lagopus
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2-D embedding of WWW images

]
o I
2 0 .--o.\...
_ The image graph was constructed
The image graph was from traditional page level link
constructed from block level analysis

link analysis
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2-D Embeddmg of Web Images

0.1

0.08 -

0.06 +

0.04 -

0.02

-0.02

-0.04 -

-0.06 ! | ! | ! 1 !
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

= 2-D visualization of the mammal category using the second and
third eigenvectors.
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Web Image Search Result Presentation

Quaoar Compared by Diameter
with Other Salar System Bodies
* * .
. 5 » -
3 ~ LS
" - YE00
- - o mies <

Figure 1. Top 8 returns of query “pluto” in Google’s image search engine (a)
and AltaVista’s image search engine (b)

(b)

= Two different topics in the search result
= A possible solution:

= Cluster search results into different
semantic groups

1/25/2010 Data Mining: Principles and Algorithms
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Three kinds of WWW image representation

= Visual Feature Based Representation
» Traditional CBIR

= Textual Feature Based Representation
= Surrounding text in image block

= Link Graph Based Representation
» Image graph embedding
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Hierarchical Clustering

= Clustering based on three representations
» Visual feature
= Hard to reflect the semantic meaning

= Textual feature
= Semantic
= Sometimes the surrounding text is too little

= Link graph:
= Semantic
= Many disconnected sub-graph (too many clusters)

= [Two Steps:
= Using texts and link information to get semantic clusters

= For each cluster, using visual feature to re-organize the
images to facilitate user’s browsing
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Our System

= Dataset
= 26.5 millions web pages
http://dir.yahoo.com/Arts/Visual Arts/Photography/Museums and Galleries/

= 11.6 millions images

= Filter images whose ratio between width and height are greater
than 5 or smaller than 1/5

= Removed images whose width and height are both smaller than
60 pixels

= Analyze pages and index images

= VIPS: Pages - Blocks

= Surrounding texts used to index images
= An illustrative example

= Query “Pluto”

= Top 500 results

1/25/2010 Data Mining: Principles and Algorithms
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Clustering Using Visual Feature

Figure 5. Five clusters of search results of query “pluto” using low level visual
feature. Each row is a cluster.

= From the perspectives of color and texture, the
clustering results are quite good. Different clusters
have different colors and textures. However, from
semantic perspective, these clusters make little sense.
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Clustering Using Textual Feature

Figure 6. The Eigengap curve with k for the
“pluto” case using textual representation

Figure 7. Six clusters of search results of query “pluto”
using textual feature. Each row is a cluster

= Six semantic categories are correctly
identified if we choose & = 6.

1/25/2010 Data Mining: Principles and Algorithms
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Clustering Using Graph Based Representation

Figure 8. Five clusters of search results of query “pluto” using image
link graph. Each row is a cluster

= Each cluster Is semantically aggregated.

= [00 many clusters.

= In “pluto” case, the top 500 results are clustered into 167
clusters. The max cluster number is 87, and there are 112
clusters with only one image.
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Combining Textual Feature and Link Graph

Figure 10. The Eigengap curve with k for the
“pluto” case using textual and link
combination

Figure 9. Six clusters of search results of query “pluto”
using combination of textual feature and image link graph.
Each row is a cluster

= Combine two affinity matrix

Stextual (|1 J) If Slink (l, J) =0

comblne( J) 1 if Slink(I’J)>O
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Final Presentation of Our System

= Using textual and link information to get some
semantic clusters

= Use low level visual feature to cluster (re-organize)
each semantic cluster to facilitate user’s browsing
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Summary

= More improvement on web search can be
made by mining webpage Layout structure

= Leverage visual cues for web information
analysis & information extraction

= Demos:
» http://www.ews.uiuc.edu/~dengcai?
= Papers
= VIPS demo & dlI

1/25/2010 Data Mining: Principles and Algorithms 100



References

= Deng Cai, Shipeng Yu, Ji-Rong Wen and Wei-Ying Ma, “Extracting Content Structure for
Web Pages based on Visual Representation”, The Fifth Asia Pacific Web Conference,
2003.

= Deng Cai, Shipeng Yu, Ji-Rong Wen and Wei-Ying Ma, “VIPS: a Vision-based Page
Segmentation Algorithm”, Microsoft Technical Report (MSR-TR-2003-79), 2003.

= Shipeng Yu, Deng Cai, Ji-Rong Wen and Wei-Ying Ma, “Improving Pseudo-Relevance
Feedback in Web Information Retrieval Using Web Page Segmentation”, 12th
International World Wide Web Conference (WWW2003), May 2003.

= Ruihua Song, Haifeng Liu, Ji-Rong Wen and Wei-Ying Ma, “Learning Block Importance
Models for Web Pages”, 13th International World Wide Web Conference (WWW2004),
May 2004.

= Deng Cai, Shipeng Yu, Ji-Rong Wen and Wei-Ying Ma, "Block-based Web Search”,
SIGIR 2004, July 2004 .

= Deng Cai, Xiaofei He, Ji-Rong Wen and Wei-Ying Ma, “Block-Level Link Analysis”, SIGIR
2004, July 2004 .

= Deng Cai, Xiaofei He, Wei-Ying Ma, Ji-Rong Wen and Hong-Jiang Zhang, “Organizing
WWW Images Based on The Analysis of Page Layout and Web Link Structure”, The
IEEE International Conference on Multimedia and EXPO (ICME'2004) , June 2004

= Deng Cai, Xiaofei He, Zhiwei Li, Wei-Ying Ma and Ji-Rong Wen, “Hierarchical Clustering
of WWW Image Search Results Using Visual, Textual and Link Analysis”,12th ACM
International Conference on Multimedia, Oct. 2004 .

1/25/2010 Data Mining: Principles and Algorithms 101





http://www.cs.uiuc.edu/~hanj

