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Outline

• Why combine?  A motivating example
• Hidden dangers of model selection
• Reducing modeling uncertainty through

Bayesian Model Averaging
• Stabilizing predictors through bagging
• Improving performance through boosting
• Emerging theory illuminates empirical success
• Bundling, in general
• Latest algorithms
• Closing Examples & Summary
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Reasons to combine estimators

• Decreases variability in the predictions.

• Accounts for uncertainty in the model class.

P−> Improved accuracy on new data.
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A Motivating Example:
Classifying a bat’s species from its chirp
• Goal:  Use time-frequency features of echolocation signals

to classify bats by species in the field (avoiding capture
and physical inspection).

• U. Illinois biologists gathered data:  98 signals from 19
bats representing 6 species:  Southeastern, Grey, Little
Brown, Indiana, Pipistrelle, Big-Eared.

• ~35 data features (dimensions) calculated from signals,
such as low frequency at the 3db level, time position of the
signal peak, and amplitude ratio of 1st and 2nd harmonics.

• Turned out to have a nice level of difficulty for comparing
methods:  overlap in classes, but some separability.
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What is model uncertainty?

• Suppose we wish to predict y from
predictors x.

• Given a dataset of observations, D, for a
new observation with predictors x* we want
to derive the predictive distribution of y*

given x* and D.

),|P( Dy ∗∗ x
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In practice…

• Although we want to use all the information
in D to make the best estimate of y* for an
individual with covariates x*…

• In practice, however, we always use

   where M is a model constructed from D.

),|P( Dy ∗∗ x

),|P( My ∗∗ x
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Selecting M
• The process of selecting a model usually

involves
– Model class selection

• Linear regression, tree regression, neural network

– Variable selection
• variable exclusion, transformation, smoothing

– Parameter estimation

• We tend to choose the one model that fits
the data or performs best as the model.
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What’s wrong with that?

• Two models may equally fit a dataset (with
repect to some loss) but have different
predictions.

• Competing interpretable models with
equivalent performance offer ambiguious
conclusions.

• Model search dilutes the evidence.  “Part of
the evidence is spent specifying the model.”
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Bayesian Model Averaging

Goal: Account for model uncertainty

Method: Use Bayes’ Theorem and average the
models by their posterior probabilities

Properties:

• Improves predictive performance

• Theoretically elegant

• Computationally costly



© 1999 Elder & Ridgeway KDD99 T5-12 Combining Estimators

Averaging the models

Consider a set containing the K candidate
models — M1,…, MK.

With a few probability manipulations we can
make predictions using all of them.

The probability mass for a particular prediction value of y is a weighted average of the
probability mass that each model places on that value of y.  The weight is based on the
posterior probability of that model given the data.
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Bayes’ Theorem

• Mk - model

• D - data

• P(D|Mk) - integrated likelihood of Mk

• P(Mk) - prior model probability
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Challenges
• The size of the model set may cause

exhaustive summation to be impossible.

• The integrated likelihood of each model is
usually complex.

• Specifying a prior distribution (even a non-
informative one) across the space of models
is non-trivial.

• Proposed solutions to these challenges often involve MCMC, BIC
approximation, MLE approximation, Occam’s window, Occam’s razor.
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Performance

• Survival model: Primary biliary cirrhosis
– BMA vs. Stepwise regression — 2% improvement

– BMA vs. expert selected model — 10% improvement

• Linear regression: Body fat prediction
– BMA provides best 90% predictive coverage.

• Graphical models
– BMA yields an improvement
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BMA References

• Chris Volinsky’s BMA homepage
www.research.att.com/~volinsky/bma.html

• J. Hoeting, D. Madigan, A. Raftery, C. Volinsky
(1999). “Bayesian Model Averaging: A Practical
Tutorial” (to appear in Statistical Science),
www.stat.colostate.edu/~jah/documents/bma2.ps
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We can always assume

Assume that we have a way of constructing a
predictor, f        , from a dataset D.

We want to choose the estimator of f that
minimizes J, squared loss for example.

Unstable predictors
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Bias-variance decomposition
If we could average over all possible datasets,

let the average prediction be

The average prediction error over all datasets
that we might see is decomposable

variancebiasnoise
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Bias-variance decomposition (cont.)

• The noise cannot be reduced.

• The squared-bias term might be reducible

• The variance term is 0 if we use

But this requires having an infinite number of datasets

variancebiasnoise
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Bagging (Bootstrap Aggregating)

Goal:  Variance reduction

Method: Create bootstrap replicates of the
dataset and fit a model to each. Average the
predictions of each model.

Properties:

• Stabilizes “unstable” methods

• Easy to implement, parallelizable

• Theory is not fully explained
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Bagging algorithm

1. Create K bootstrap replicates of the dataset.

2. Fit a model to each of the replicates.

3. Average (or vote) the predictions of the K
models.

Bootstrapping simulates the stream of infinite
datasets in the bias-variance decomposition.
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Bagging Example
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CART decision boundary
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100 bagged trees
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Bagged tree decision boundary
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Regression results
Squared error loss
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Classification results
Misclassification rates
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Bagging References

• Leo Breiman’s homepage
www.stat.berkeley.edu/users/breiman/

• Breiman, L. (1996) “Bagging Predictors,”
Machine Learning, 26:2, 123-140.

• Friedman, J. and P. Hall (1999) “On
Bagging and Nonlinear Estimation”
www.stat.stanford.edu/~jhf
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Boosting
Goal: Improve misclassification rates

Method: Sequentially fit models, each more
heavily weighting those observations
poorly predicted by the previous model

Properties:

• Bias and variance reduction

• Easy to implement

• Theory is not fully (but almost) explained
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Origin of Boosting
Classification problems

{y, x}i , i = 1,…,n

y ∈ {0, 1}

The task - construct a function,

F(x) : x → {0, 1}

so that F minimizes misclassification error.
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Generic boosting algorithm

Equally weight the observations (y,x)i

For t in 1,…,T

Using the weights, fit a classifier ft(x) → y
Upweight the poorly predicted observations

Downweight the well-predicted observations

Merge f1,…,fT to form the boosted classifier
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Real AdaBoost
Schapire & Singer 1998

 yi ∈ {-1,1}, wi = 1/N
For t in 1,…,T do

1. Estimate Pw(y = 1|x).

2. Set  f

3. w                                     and renormalize

Output the classifier F
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AdaBoost’s Performance
Freund & Schapire [1996]

• Leo Breiman - AdaBoost with trees is the “best
off-the-shelf classifier in the world.”

• Performs well with many base classifiers and in a
variety of problem domains.

• AdaBoost is generally slow to overfit.

• Boosted naïve Bayes tied for first place in the
1997 KDD Cup. (Elkan [1997])

• Boosted naïve Bayes is a scalable, interpretable
classifier (Ridgeway, et al [1998]).
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Boosting Example
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After one iteration
CART splits, larger points have great weight
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After 3 iterations
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After 20 iterations
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Decision boundary after 100 iterations
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Boosting as optimization

• Friedman, Hastie, Tibshirani [1998] -
AdaBoost is an optimization method for
finding a classifier.

• Let  y∈{-1,1},  F(x)∈(-∞,∞)

( ) ( )xeEFJ xyF |)(−=
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Criterion

• E(e–yF(x)) bounds the misclassification rate.

• The minimizer of E(e–yF(x)) coincides with
the maximizer of the expected Bernoulli
likelihood.

)()0)(( xyFexyFI −<<
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Optimization step

• Select f to minimize J…
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LogitBoost
Friedman, Hastie, Tibshirani [1998]

• Logistic regression

• Expected log-likelihood of a regressor, F(x)
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Newton steps

• Iterate to optimize expected log-likelihood.
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LogitBoost, continued

• Newton steps for Bernoulli likelihood

• In practice the Ew(•|x) can be any regressor -
trees, smoothers, etc.

• Trees are adaptive and work well for high
dimensional data.
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Misclassification rates
Friedman, Hastie, Tibshirani [1998]
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Boosting References

• Rob Schapire’s homepage
www.research.att.com/~schapire

• Freund, Y. and R. Schapire (1996). “Experiments with a new boosting
algorithm,” Machine Learning: Proceedings of the 13th International
Conference, 148-156.

• Jerry Friedman’s homepage
www.stat.stanford.edu/~jhf

• Friedman, J., T. Hastie, R. Tibshirani (1998). “Additive Logistic
Regression: a statistical view of boosting,” Technical report, Statistics
Department, Stanford University.
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In general, combining (“bundling”)
estimators consists of two steps:

• Case Weights
• Data Values
• Guiding Parameters
• Variable Subsets

1)  Constructing varied models, and
2)  Combining their estimates

Generate component models by varying:

Combine estimates using:
• Estimator Weights
• Voting
• Advisor Perceptrons
• Partitions of Design Space, X
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Other Bundling Techniques
We’ve Examined:
• Bayesian Model Averaging:  sum estimates of possible models, weighted by

posterior evidence
• Bagging (Breiman 96) (bootstrap aggregating) -- bootstrap data (to build

trees mostly); take majority vote or average
• Boosting (Freund & Shapire 96) -- weight error cases by βt = (1-e(t))/e(t),

iteratively re-model; average, weighing model t by ln(βt)

Additional Example Techniques:
• GMDH (Ivakhenko 68) -- multiple layers of quadratic polynomials, using

two inputs each, fit by Linear Regression
• Stacking (Wolpert 92) -- train a 2nd-level (LR) model using leave-1-out

estimates of 1st-level (neural net) models
• ARCing (Breiman 96) (Adaptive Resampling and Combining) -- Bagging

with reweighting of error cases; superset of boosting
• Bumping (Tibshirani 97) -- bootstrap, select single best
• Crumpling (Anderson & Elder 98) -- average cross-validations
• Born-Again (Breiman 98) -- invent new X data...
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Group Method of Data Handling
(GMDH)

• Try all pairs of variables (K choose 2) in quadratic polynomial nodes.

• Fit coefficients using regression.

• Keep best M nodes.

• Train model on one training data set, score on test data set. (Need a third data
set for independent confirmation of model.)
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Polynomial Networks
(ASPN)
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When does Bundling work?

• Breiman (1996):  when the prediction method is unstable
(significantly different models are constructed)

• Ali & Pazzani (1996):  when there is low noise, lots of
irrelevant variables, and good individual predictors which
make different errors

• when models are slightly overfit

• when models are from different families

Hypotheses:
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Advanced techniques

• Stochastic gradient boosting

• Adaptive bagging

• Example regression and classification results



© 1999 Elder & Ridgeway KDD99 T5-53 Combining Estimators

Stochastic Gradient Boosting
Goal: Non-parametric function estimation

Method: Cast the problem as optimization and
use gradient ascent to obtain predictor

Properties:

• Bias and variance reduction

• Widely applicable

• Can make use of existing algorithms

• Many tuning parameters
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Improving boosting

• Boosting usually has the form

Improve by...

• Sub-sampling a fraction of the data at each
step when computing the expectation.

• “Robustifying” the expectation.

• Trimming observations with small weights.
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Stochastic gradient boosting offers...

• Application to likelihood based models
(GLM, Cox models)

• Bias reduction - non-linear fitting

• Massive datasets - bagging, trimming

• Variance reduction - bagging

• Interpretability - additive models

• High-dimensional regression - trees

• Robust regression
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SGB References

• Friedman, J. (1999). “Greedy function approximation: a
gradient boosting machine,” Technical report, Dept. of
Statistics, Stanford University.

• Friedman, J. (1999). “Stochastic gradient boosting,”
Technical report, Dept. of Statistics, Stanford University.
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Adaptive Bagging
Goal: Bias and variance reduction

Method: Sequentially fit bagged models,
where each fits the current residuals

Properties:

• Bias and variance reduction

• No tuning parameters
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Adaptive bagging algorithm
1. Fit a bagged regressor to the dataset D.

2. Predict “out-of-bag” observations.

3. Fit a new bagged regressor to the bias
(error) and repeat.

For a new observation, sum the predictions
from each stage.
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Regression results
Squared error loss
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Classification results
Misclassification rates
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Relative Performance Examples:  5 Algorithms on 6 Datasets
(John Elder, Elder Research & Stephen Lee, U. Idaho, 1997)
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Essentially every Bundling method improves performance
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Application Ex.: Direct Marketing
(Elder Research 1996-1998)

• Model respondants to direct marketing as binary variable:
0 (no response), 1 (response).

• Create models using several (here, 5) different algorithms,
all employing the same candidate model inputs.

• Rank-order model responses:

– Give highest-probability response value a rank of 1,
second highest value 2, etc.

– For bundling, combine model ranks (not estimates) into
a new consensus estimate (which is again ranked).

• Report number of response cases missed (in top portion).
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Why Bundling works

• (semi-) Independent Estimators

• Bayes Rule - weighing evidence

• Shrinking (ex.: stepwise LR)

• Smoothing (ex.: decision trees)

• Additive modeling and maximum likelihood
(Friedman, Hastie, & Tibshirani 8/20/98)

… Open research area.
Meanwhile, we recommend bundling competing candidate
models both within, and between, model families.

...and in a multitude of counselors there is safety.
Proverbs 24:6b


