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Outline

 Why combine? A motivating example
» Hidden dangers of modedl selection

* Reducing modeling uncertainty through
Bayesian Model Averaging

o Stabilizing predictors through bagging

* Improving performance through boosting

* Emerging theory illuminates empirical success
e Bundling, in general

o Latest agorithms

e Closing Examples & Summary
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Reasons to combine estimators

e Decreases variability inthe predictions.
« Accounts for uncertainty in the model class.
ve- > lmproved accuracy on new data.
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A Motivating Example:
Classifying a bat’ s species from its chirp

o Goal: Usetime-frequency features of echolocation signals
to classify bats by speciesin the field (avoiding capture
and physical inspection).

« U. lllinois biologists gathered data: 98 signals from 19
bats representing 6 species. Southeastern, Grey, Little
Brown, Indiana, Pipistrelle, Big-Eared.

« ~35 datafeatures (dimensions) calculated from signals,
such as low frequency at the 3db level, time position of the
signal peak, and amplitude ratio of 1st and 2nd harmonics.

e Turned out to have anice level of difficulty for comparing
methods. overlap in classes, but some separability.
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Sample Projection
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What is model uncertainty?

e Suppose we wish to predict y from
predictors x.

* Glven adataset of observations, D, for a
new observation with predictors x™ we want
to derive the predictive distribution of y*
given X and D.

P(y" |x",D)
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In practice...

 Although we want to use all the information
in D to make the best estimate of y* for an
individual with covariates x”...

P(y | x",D)
* In practice, however, we always use
P(y" [x,M)
where M 1samodel constructed from D.
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Selecting M

* The process of selecting a model usually
Involves

— Modd class selection
 Linear regression, tree regression, neural network

— Variable selection
o variable exclusion, transformation, smoothing

— Parameter estimation

* \We tend to choose the one model that fits
the data or performs best as the mode!.
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What’ s wrong with that?

 Two models may equally fit a dataset (with
repect to some loss) but have different
predictions.

« Competing Interpretable models with
equivalent performance offer ambiguious
conclusions.

 Model search dilutesthe evidence. “Part of
the evidence Is spent specifying the model.”
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Bayesian Model Averaging

Goal: Account for model uncertainty

Method: Use Bayes' Theorem and average the
models by their posterior probabilities

Properties:

* Improves predictive performance
* Theoretically elegant

o Computationally costly
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Averaging the models
Consider a set containing the K candidate
models — M,,..., M,.

With afew probability manipulations we can
make predictions using all of them.

P(y |x,D)=g Py X ,M,)P(M,|D)

The probability mass for a particular prediction value of y is aweighted average of the
probability mass that each model places on that value of y. The weight is based on the
posterior probability of that model given the data.
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Bayes Theorem

P(MK‘D): oFIz(D‘Mk)P(Mk)
a,,P(D[M))P(M))

* M, - model

D -data

* P(D|M,) - integrated likelthood of M,
* P(M,) - prior model probability
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Challenges

e The size of the model set may cause
exhaustive summation to be impossible.

 Theintegrated likelihood of each model Is
usually complex.

e Specifying a

orior distribution (even a non-

Informative one) across the space of models

1S nhon-trivial.

Proposed solutions to these challenges often involve MCMC, BIC
approximation, MLE approximation, Occam’ s window, Occam'’ s razor.
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Performance

o Survival model: Primary biliary cirrhosis
— BMA vs. Stepwise regression — 2% improvement
— BMA vs. expert selected model — 10% improvement
 Linear regression: Body fat prediction
— BMA provides best 90% predictive coverage.
e Graphical models

— BMA yields an improvement
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BMA References

e ChrisVolinsky’s BMA homepage
www.research.att.com/~volinsky/oma.htmi

« J Hoeting, D. Madigan, A. Raftery, C. Volinsky
(1999). “Bayesian Model Averaging: A Practical
Tutoria” (to appear in Statistical Science),
www.stat.colostate.edu/~jah/documents/bma2.ps
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Unstable predictors

We can always assume
y = f(x)+e,whereE(e | x) =0

Assume that we have away of constructing a
predictor, f_(x), from adataset D.

We want to choose the estimator of f that
minimizes J, squared loss for example.

J(f,D)=E, (y- f (X))’
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Bias-variance decomposition

If we could average over all possible datasets,
let the average prediction be

f(x)=E, f,(X)
The average prediction error over all datasets
that we might see Is decomposable

E, J(f,D)=Ee*+E,(f(x)- f(x))?+E,,(f,(x)- f(x))*
= noise+ bias+ variance
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Bias-variance decomposition (cont.)

E, J(f,D)=Ee?+E,(f(x)- f(x))2+E,,(f,(x)- f(x))*
= noise+ bias+ variance

 The noise cannot be reduced.
e The squared-bias term might be reducible
e Thevarianceterm i1sO If we use

f,(x) = f(x)

But this requires having an infinite number of datasets
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Bagging (Bootstrap Aggregating)

Goal: Variance reduction

Method: Create bootstrap replicates of the
dataset and fit amodel to each. Average the
predictions of each model.

Properties:

o Stabilizes “unstable” methods

e Easy to implement, parallelizable
 Theory isnot fully explained
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Bagging algorithm

1. Create K bootstrap replicates of the dataset.
2. Fit amodel to each of the replicates.

3. Average (or vote) the predictions of the K
models.

Bootstrapping simulates the stream of infinite
datasets in the bias-variance decomposition.
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Bagging Example
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CART decision boundary
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100 bagged trees
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Bagged tree decision boundary
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Regression results

Squared error loss
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Classification results

Misclassification rates

B cART

Bagged CART

Diabetes Breast lonosphere Heart Soybean Glass Waveform
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Bagging References

e Leo Breiman’s homepage
www.stat.berkeley.edu/users/breiman/

 Breiman, L. (1996) “Bagging Predictors,”
Machine Learning, 26:2, 123-140.

e Friedman, J. and P. Hall (1999) “On
Bagging and Nonlinear Estimation”
www.stat.stanford.edu/~jhf
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Boosting

Goal: Improve misclassification rates

Method: Sequentially fit models, each more
heavily welghting those observations
poorly predicted by the previous model

Properties:

e Biasand variance reduction

e Easy to implement

 Theory isnot fully (but amost) explained
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Origin of Boosting

Classification problems
{y, X}, 1=1,...,n
yl {0, 1}
The task - construct a function,
F(X): x® {0, 1}

so that F minimizes misclassification error.

© 1999 Elder & Ridgeway KDD99 T5-30 Combining Estimators



Generic boosting algorithm

Equally weight the observations (y,x);

Fortinl,...,T
Using the weights, fit aclassifier f(x) ® y
Upweight the poorly predicted observations
Downweight the well-predicted observations

Mergef,,...,fr to form the boosted classifier
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Real AdaBoost

Schapire & Singer 1998

y. 1 {-1,1},w; = N

Fortinl,...,T do
1. Estimate P,,(y = 1|x).
2 Set f(x) = 2logwtY ZHX)
P, (y =-1[X)

3.w, -~ w,exp(- y, f,(x;)) and renormalize

Output the classifier F(x) = signd} ft(x)g
e
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AdaBoost’ s Performance
Freund & Schapire [1996]

e Leo Braman - AdaBoost with treesisthe “best
off-the-shelf classifier in the world.”

e Performswell with many base classifiersand in a
variety of problem domains.

o AdaBoost isgenerally dow to overfit.

» Boosted naive Bayestied for first place in the
1997 KDD Cup. (Elkan [1997])

e Boosted nalve Bayesis a scalable, interpretable
classifier (Ridgeway, et al [1998]).
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Boosting Example
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After oneiteration

CART splits, larger points have great weight
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After 3 iterations
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After 20 iterations
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Decision boundary after 100 iterations
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Boosting as optimization

* Friedman, Hastie, Tibshirani [1998] -
AdaBoost Is an optimization method for
finding a classifier.

e Let yl {-1,1}, FO)I (-¥,¥)
J(F)= E(e'yF(X) \x)
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Criterion

e E(e¥F™) bounds the misclassification rate.
| (yF(x) <0) <e ¥"¥

« The minimizer of E(e¥Y*™) coincides with
the maximizer of the expected Bernoulli
likelihood.

E(/(p(x),y))=- Elogl+e 2" ™)

© 1999 Elder & Ridgeway KDD99 T5-40 Combining Estimators



Optimization step
J (|: + f ) — E(e- y(F (x)+f (x)) ‘ X)

e Selectftominimized...

FOD 4 EO 4 1)0q E [1(y=1)]|x]
* T1-E[I(y=1)x]

w(x,y) =e "™
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L ogitBoost

Friedman, Hastie, Tibshirani [1998]
e Logistic regression
y = 11 with probability p(x)
~10  with probability1- p(x)

e Expected log-likelihood of aregressor, F(x)
E/(F) = E(yF(x)- log@+e"®)|x)
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Newton steps
J(F +f)=E(y(F(x) + f(x))- log(L+eF®* ™) |x]

o |terate to optimize expected log-likelihood.

%J(F“wf)\ _
FD (0= FO ()

€ 2
i o
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L ogitBoost, continued

* Newton steps for Bernoulli likelihood

£ y-px) |9

E
“€o00a- PO 5
W() = pOY(L- p(X)

F(X)= F(X)+

 [npracticethe E, (*|x) can be any regressor -
trees, smoothers, etc.

* Treesare adaptive and work well for high
dimensional data.
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Misclassification rates
Friedman, Hastie, Tibshirani [1998]

B CcART
AdaBoost CART
LogitBoost CART

Breast lonosphere Glass Sonar Waveform
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Boosting References

* Rob Schapire’ s homepage

www.research.att.com/~schapire

* Freund, Y. and R. Schapire (1996). “ Experiments with a new boosting
algorithm,” Machine Learning: Proceedings of the 13" International
Conference, 148-156.

« Jerry Friedman’s homepage

www.stat.stanford.edu/~jhf

 Friedman, J,, T. Hastie, R. Tibshirani (1998). “Additive Logistic
Regression: a statistical view of boosting,” Technical report, Statistics
Department, Stanford University.
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In general, combining (“bundling”)

estimators consists of two steps.

1) Constructing varied models, and

2) Combining their estimates
Generate component models by varying:

o Case Weights

 DataValues

o Guiding Parameters

e Variable Subsets

Combine estimates using:
e Estimator Weights
e Voting
o Advisor Perceptrons
 Partitions of Design Space, X

© 1999 Elder & Ridgeway KDD99 T5-47 Combining Estimators



Other Bundling Techniques

We’ve Examined:

« Bayesian Model Averaging: sum estimates of possible models, weighted by
posterior evidence

« Bagging (Breiman 96) (bootstrap aggregating) -- bootstrap data (to build
trees mostly); take majority vote or average

« Boosting (Freund & Shapire 96) -- weight error cases by b, = (1-e(t))/e(t),
iteratively re-model; average, weighing model t by In(b,)

Additional Example Techniques:

« GMDH (lvakhenko 68) -- multiple layers of quadratic polynomials, using
two inputs each, fit by Linear Regression

« Stacking (Wolpert 92) -- train a 2nd-level (LR) model using leave-1-out
estimates of 1st-level (neural net) models

 ARCing (Breiman 96) (Adaptive Resampling and Combining) -- Bagging
with reweighting of error cases,; superset of boosting

 Bumping (Tibshirani 97) -- bootstrap, select single best

 Crumpling (Anderson & Elder 98) -- average cross-validations

 Born-Again (Breiman 98) -- invent new X data...
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Group Method of Data Handling
(GMDH)

Layer 1

a —P A +Aa+AD

+A a8 +Aab
P + Agb?

z, Layer 2

B, + B, + B,d
+B, ¢+ B,cd

I +Bed? Yest

C,+Ce+Cf
+C, € + Cef
+ Cf?

Try al pairs of variables (K choose 2) in quadratic polynomial nodes.
Fit coefficients using regression.
Keep best M nodes.

Train model on one training data set, score on test data set. (Need athird data
set for independent confirmation of model.)
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Polynomial Networks
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When does Bundling work?

Hypotheses:

e Breiman (1996): when the prediction method is unstable
(significantly different models are constructed)

o Ali & Pazzani (1996): when thereislow noise, lots of
Irrelevant variables, and good individual predictors which
make different errors

* when models are dightly overfit
 when models are from different families
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Advanced techniques

e Stochastic gradient boosting
e Adaptive bagging
« Exampleregression and classification results
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Stochastic Gradient Boosting

Goal: Non-parametric function estimation

Method: Cast the problem as optimization and
use gradient ascent to obtain predictor

Properties:

e Biasand variance reduction
 Widely applicable

e Can make use of existing algorithms
 Many tuning parameters
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|mproving boosting

* Boosting usually hasthe form
F®(x) 2 FO(x)+] Ew(z(y,x)‘x)
lmprove by...

o Sub-sampling afraction of the data at each
step when computing the expectation.

* “Robustifying” the expectation.
 Trimming observations with small weights.
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Stochastic gradient boosting offers...

« Application to likelihood based models
(GLM, Cox models)

 Biasreduction - non-linear fitting

« Massive datasets - bagging, trimming
 Variance reduction - bagging
 Interpretability - additive models

e High-dimensional regression - trees
e Robust regression
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SGB References

e Friedman, J. (1999). “ Greedy function approximation: a
gradient boosting machine,” Technical report, Dept. of
Statistics, Stanford University.

e Friedman, J. (1999). “ Stochastic gradient boosting,”
Technical report, Dept. of Statistics, Stanford University.
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Adaptive Bagging

Goal: Bias and variance reduction

Method: Sequentially fit bagged models,
where each fits the current residuals

Properties:
e Bias and variance reduction
* No tuning parameters
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Adaptive bagging algorithm
1. Fit a bagged regressor to the dataset D.

2. Predict “out-of-bag” observations.

3. Fit anew bagged regressor to the bias
(error) and repeat.

For a new observation, sum the predictions
from each stage.
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Regression results

Squared error loss

I Bagging
] Adaptive bagging
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Classification results

Misclassification rates
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Relative Performance Examples. 5 Algorithms on 6 Datasets
(John Elder, Elder Research & Stephen Lee, U. Idaho, 1997)
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Essentially every Bundling method improves performance
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Application Ex.: Direct Marketing
(Elder Research 1996-1998)

* Model respondants to direct marketing as binary variable:
O (no response), 1 (response).

» Create models using several (here, 5) different algorithms,
all employing the same candidate model inputs.

e Rank-order model responses.

— Give highest-probability response value arank of 1,
second highest value 2, etc.

— For bundling, combine model ranks (not estimates) into
anew consensus estimate (which is again ranked).

Report number of response cases missed (in top portion).

© 1999 Elder & Ridgeway KDD99 T5-63 Combining Estimators



#Cases Missed

Marketing Application Performance
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Median (and Mean) Error Reduced with
each Stage of Combination
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...and in a multitude of counselors there is safety.
Proverbs 24:6b

Why Bundling works

e (semi-) Independent Estimators

e Bayes Rule - weighing evidence

o Shrinking (ex.: stepwise LR)

e Smoothing (ex.. decision trees)

« Additive modeling and maximum likelihood
(Friedman, Hastie, & Tibshirani 8/20/98)

... Open research area.
Meanwhile, we recommend bundling competing candidate
models both within, and between, model families.
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